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A B S T R A C T

Hays Converter (HC), the first registered Canadian beef breed, was developed by Harry Hays in the 1950’s as a
composite with contributions from Holstein, Hereford, Brown Swiss and with a later introgression of Angus. The
breed is well adapted to the Western Canadian climate. Calves reach market weight early, convert feed to gain
efficiently, and have excellent carcass quality and yield. The edited data consisted of 21,612 weight records
taken at ages 1 to 474 days, from 8,850 animals born at Red Bow Ranching Ltd., Calgary, Alberta between 1970
and 2016. This study aimed to evaluate the genetic parameters and trends in birth, weaning and yearling weights
of HC through comparison of different multiple trait models (MTM) with a random regression model (RRM). In
MTM scenarios, both adjusted and unadjusted data were examined besides considering contemporary groups
(CG) as fixed or random. Estimates of variance components, heritability and genetic correlations from the two
approaches were not substantially different and showed similar changes along the growth trajectory. Although
there was a considerable reduction in genetic trends from 2004 to 2008, due to weak sire selection, trends
generally increased through 2016. Overall, both models performed similarly and fixed CG were preferred.

1. Introduction

Hays Converter (HC), was developed by Harry Hays in the 1950’s,
and was the first beef breed of Canadian origin to be registered under
the Canadian Livestock Pedigree Act in 1975 (Fleming et al., 2016). HC
combined Holstein, Hereford and Brown Swiss breeds (Fleming et al.,
2016). It is known for rapid growth with excellent carcass grading
under Canadian standards and adapts to the climatic conditions of
Western Canada (Fleming 2013). Since its formation, the breeding ob-
jective for HC was to create a beef breed that excelled in growth and
efficiently converted feed to gain so that the cattle reached market
weight at earlier ages than other competing breeds. Sire selection al-
ways used the phenotypic records of weaning and yearling weights and
a subjective evaluation of growth potential. There was no selection
based on EBV or an index until 2014. However, visual inspection and
use of individual phenotypes of animals that are candidates for

selection may not maximize response to selection. Use of estimated
breeding values (EBV) as the basis for selection is expected to produce
more rapid genetic improvement (Mofakkarul Islam et al., 2013). Pre-
liminary work with single-trait and bivariate models and fixed con-
temporary groups has produced estimates of genetic parameters and
genetic trends for growth traits of HC (Fleming 2013).

Currently, most genetic evaluation programs predict EBV for growth
traits in beef cattle using multiple trait models (MTM:
Farquharson et al., 2003; Meyer 2004; Delgadillo et al., 2017). In this
approach, weight records are collected within defined windows of time
within which growth is assumed to be linear along the growth curve
and standardized to 205 and 365 days of age for weaning weight and
yearling weight, respectively (Beef Improvement Federation 2018).
Other weights recorded outside of these windows are not used in the
evaluations. This approach may lead to EBV with lower accuracies than
if all available data were used (Meyer 2004; Mota et al., 2013).
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Random regression models (RRM) facilitate use of all available
weights that are recorded over time for each animal (Schaeffer 2004).
Although pre-adjustment to standard ages is not necessary, fitting RRM
models is similar to MTM in computational complexity. However, RRM
are sensitive to sparse data, as may occur at extremes of age-weight
trajectories (Meyer 1999).

Contemporary groups (CG) allow for elimination of bias caused by
different environmental factors. Including CG in the genetic evaluation
leads to a more accurate EBV and thus the potential for increased ge-
netic improvement (Van Vleck 1987; Ramirez-Valverde et al., 2008).
When they are considered as fixed effects, the bias due to non-random
relationship between sires and CG is reduced. If they are considered
random, then the prediction error variance is reduced because more
information is used to predict the EBV (Visscher and Goddard, 1993).
Application of the predicted breeding values to predict the merit of
progeny in currently unobservable future contemporary groups would
argue for considering CG as random effects.

Therefore, the goal of this study was to evaluate alternatives for
prediction of EBV in HC. Specific objectives were to assess RRM versus
MTM and the use of random versus fixed CG and to estimate genetic
parameters and genetic trends of birth, weaning and yearling weights.

2. Materials and methods

The data used for this study was collected and provided by a com-
mercial enterprise (Red Bow Ranching Ltd, Calgary, AB) using industry
standard production practices which were generally consistent with the
guidelines of the Canadian Council on Animal Care (Olfert et al., 1993)

Raw data consisted of weights recorded at birth (BW), weaning
(WW from 100 to 315 days of age), and yearling (YW from 245 to 544
days of age) (Table 1), from animals born between 1970 and 2016. In
order to edit data for further analysis, all weaning and yearling weight
records obtained at ages that deviated from the respective mean ages by
more than three standard deviations were excluded from the data.

CGs were defined by concatenation of herd, year, season of birth
(Jan-Mar, Apr-June, July-Sept, and Oct-Dec) and sex (male or female).
CGs of less than three animals were excluded from the respective
analyses where they were considered as fixed. Age of dam at calving
was categorized into five classes (2 years old, 3 years old, 4 years old, 5-
7 years old, and ≥8 years old). Records from calves produced through
embryo transfer and also those with unidentified dams were excluded.
Finally, and in contrast to Fleming (2013), all conjectural birth weights
were eliminated from the data. The number of sires and dams in the
pedigree were equal to 137 and 1701 in which 63% and 17% of dams
were daughters of sires or dams that were used as dams, respectively
(Table 1). Animals with unknown parents were assigned to generation
zero. For animals with recorded parents, generation numbers were
calculated following the approach of Brinks et al. (1961) wherein
generation numbers for descendants of animals in generation 0 were
calculated as the average generation number of their parents plus one.
The average generation interval was estimated as the linear regression

of birth year on generation number.
After this initial editing, datasets were prepared for different MTM

scenarios and RRM analysis. For the RRM analysis, all weights between
1 and 474 (the maximum yearling age after± 3SD edit) days of age
were used along with 1381 records that were recorded during the
period when feed intake was measured. This dataset contained 21,612
records from 8,850 animals with minimum and maximum numbers of 1
to 9 records per animal (Fig. 1, Table 2). For MTM analyses, two sets of
data were extracted. Dataset 1 was based on the windows of age re-
commended by the Beef Improvement Federation (2018) for weaning
and yearling weights (i.e., ranges of +/- 45 days from the average ages
at which weaning (188 d) and yearling (365 d) weights were recorded
in HC) and included all available records of BW. These weights were
linearly adjusted for age as follows:

= + ×W BW WW BW
Weaning age
( ) 188188

= + ×W W YW WW
Yearling age Weaning age

( )
( )

177365 188

where: W188 and W365 represent age-adjusted weaning and yearling
weights, respectively (N = 15,107 records including BW). Dataset 2
had wider windows in order to incorporate additional data making it
more similar to the dataset analyzed with RRM. In the second dataset
the windows for acceptable weights were expanded to +/- 65 days and
age effects were estimated simultaneously in MTM models. In total,
approximately 30% and 26% more records were available for the RRM
analysis than in the first and second datasets used in the MTM analyses.
The growth trajectory from 123 to 474 days of age is shown in Fig. 1.
Note that, except for BW with an average 40 kg, the weights recorded at
ages less than 123 days were not used in either analysis due to their low
frequency.

3. Models

3.1. Different MTM scenarios

First, for the analysis of age-adjusted weights, the MTM was defined
as follows:

= + + + +
=

y CG b aod a d e( )ijlmt i
n

n j
n

lt mt ijlmt
0
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where yijlmt is the tth weight record for BW, WW188 and YW365 of the
animal l in the ith CG and the jth class of age of dam at calving (aod); bn
is a fixed regression adjusted to linear and quadratic effects for the aod
as a covariate; alt is the random direct additive genetic effect of the
animal l for weight t; dmt is the random maternal additive genetic effect
of the dam m for weight t and eijlmt is the random residual effect. To
avoid the failure that occurred in the approximation of standard errors
for maternal permanent environmental parameters due to small sample
size and/or over-parameterization (Meyer 2018), these effects were

Table 1
Descriptive statistics detailing distributions of ages at the recording of weaning and yearling weights, and the weight traits along with number of sires, dams and their
daughters as dams. Statistics from the data set after editing are shown parenthetically.

N Mean SD Min Max

Weaning age (days) 8748 (7776) 188.7 22.0 100 (123) 315 (254)
Yearling age (days) 6474 (5936) 375.9 32.8 245 (280) 544 (474)
Birth weight (kg) 7119 (6519) 39.7 5.7 13.6 (22.7) 74.8 (56.7)
Weaning weight (kg) 8585 (7776) 247.3 40.5 61.7 (126.1) 412.8 (365.1)
Yearling weight (kg) 6396 (5936) 444.0 79.3 138.8 (217.7) 739.4 (679.9)
Sires 137
Dams 1701
Daughters of sires as dams 1069
Daughters of dams as dams 291
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removed from the MTMs.
This model can be described in matrix notation as follows:

= + + +y X Z d Z m1 2

where y is the vector of weight records; β is the vector of fixed effects
(CG classes and aod regressions); d is the vector of random direct ad-
ditive genetic effects; m is the vector of random maternal additive ge-
netic effects and ε is the vector of residual effects; X, Z1 and Z2 are the
incidence matrices for the corresponding effects. The assumptions for
this analysis were as follows:

= =E
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d
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where Gd and Gm are (co)variance matrices of random effects for direct
additive genetic and maternal additive genetic effects, respectively; A is
the numerator relationship matrix; In is the identity matrix whose order
is equal to the number of records; R is a (co)variance matrix of random
residual effects and ⊗ is the kronecker product operator. A parallel
analysis to that just described was conducted using the weight records
which had not been pre-adjusted for age and including linear covariates
in the model to account for the age effects.

To evaluate consideration of CG effects as being either fixed or
random, both of the datasets were analyzed similarly, but only using
the data which was not pre-adjusted for age. For convenience these
analyses are referred to as MTM-data1-CG-fixed, MTM-data1-CG-
random, MTM-data2-CG-fixed and MTM-data2-CG-random. No ma-
ternal genetic effect was considered for YW (due to numerical errors).
To test the non-linearity of age effects on WW and YW, the second
dataset was also analyzed with two additional 3-traits models, i.e.
MTM-data2-CG-fixed-age quadratic and MTM-data2-CG-random-age
quadratic, respectively. In each of the six models above, when con-
sidering CG as a random effect, the assumptions were as follows;
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where Gcg is the (co)variance matrix of random effects for con-
temporary groups and Ig is the identity matrix whose order is equal to
the number of contemporary groups.

In order to estimate direct (h2a) or maternal (h2m) heritability when
considering CG as fixed or random, the respective phenotypic variances
(Var (p)) were calculated as follows;

= + +Var(p) Var(a) Var(m) Var(e)CG fixed

= + + +Var(p) Var(a) Var(m) Var(CG) Var(e)CG random

where Var (a), Var (m), Var (CG) and Var (e) are additive genetic,
maternal genetic, contemporary group and residual variances, respec-
tively. Therefore,

=h Var(a/m) /Var(p)a m
2

/ CG fixed CG fixed

=h Var(a/m) /Var(p)2
a/m CG random CG random

4. RRM analysis

In implementing the RRM analysis, quadratic Legendre polynomials
were selected for the fixed regression coefficients to define changes in
the population mean trend. Random regressions of different orders (k)
of Legendre polynomials were modeled to describe variation in direct
additive genetic (a), direct permanent environmental (p), maternal
additive genetic (m) and maternal permanent environmental (c) effects,
respectively. Initially, models with quadratic, cubic and quartic degrees
of Legendre polynomials for the direct additive genetic and permanent
environmental effects were evaluated (i.e., ka = kp = 3, 4 and 5, re-
spectively). For the maternal additive genetic and permanent environ-
mental effects, linear, quadratic and cubic degrees of polynomials were
initially considered (i.e., km = kc = 2, 3 and 4, respectively). Assuming
heterogeneity of residual variances across the growth curve, they were
categorized into four age classes as follows: 1 to 60, 61 to 205, 206 to
365 and 366 to 474 days of age, respectively. Therefore, the RRM was
defined as:
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where yijlmt is each of the weight records taken at age t for the animal l

Fig. 1. Numbers of records at each age and trajectory of average weight (kg) in the data.

Table 2
Structure of data for analysis with RRM with reference to the number of records
per animal.

No. of animals Percentage

with records 8850 100.00%
1 record 1425 16.10%
2 records 3388 38.30%
3 records 3801 42.90%
7-9 records 236 2.70%
Records in total 21612
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with the dam m, in the ith CG and the jth class of aod; bn are fixed
regressions relative to aod; βn are fixed regression coefficients that
model the average growth trajectory of the population; Φn (aget) is the
nth Legendre polynomial according to age t; αln, γmn, δln and ρmn are the
nth random regression coefficients of direct additive genetic, maternal
additive genetic, direct permanent environmental and maternal per-
manent environmental effects, respectively and εijlmt is the random
residual error associated with the age t of the lth animal.

In matrix notation, the model was represented as follows:

= + + + + +y X Z Z W W1 2 1 2

where y is the vector of observations; β is the vector of fixed effects; α,
γ, δ and ρ are the vectors of random regression coefficients for direct
additive genetic, maternal additive genetic, direct permanent environ-
mental and maternal permanent environmental effects, respectively; X,
Z1, Z2, W1 and W2 are the incidence matrices for corresponding effects
and ε is the vector of residual effects. The following assumptions were
considered for the RRM:

=
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where Ka, Km, Kp and Kc are (co)variance matrices between random
regression coefficients for direct additive genetic, maternal additive
genetic, direct permanent environmental and maternal permanent en-
vironmental effects, respectively; A is the numerator relationship ma-
trix; I is an identity matrix; Na is the total number of individuals with
records; Nm is the number of dams; R is a diagonal matrix of residual
variances and ⊗is the kronecker product operator. The covariance be-
tween direct and maternal additive genetic effects was assumed to be
zero for both MTM and RRM. To find an appropriate RRM, preliminary
analyses with different orders of fit for Legendre polynomials were
examined from 1111 to 5343 (higher orders produced numerical errors)
where 1111 indicates the four random effect regressions being modeled
as linear effects and 5343 indicated the random effects being modeled
with quantic, cubic, quartic, and cubic polynomials, respectively. These
analyses were initially compared using the likelihood statistics, Akaike
information criterion (AIC), and Bayesian information criterion (BIC)
(Table 3). According to these criteria, the model 5343 initially indicated
improved description of variation in the data, although BIC imposed a
greater penalty than AIC for the number of parameters estimated
(Olori et al., 1999; Meyer 2001; Boligon et al., 2010). However, to
avoid very large estimates at the boundaries of growth trajectory
(Albuquerque and Meyer, 2001; Nobre et al., 2003; Meyer 2005a), RRM
models producing parameter estimates more similar to those from MTM
with age-adjusted weights were compared through LRT (log-likelihood
ratio test). This statistic was calculated as twice the difference in log L
between complete and reduced models:

=LRT L L2(log log )ij i j

where log Li and log Lj were the maximum of log L for the complete
model i and reduced (nested) model j, respectively. If the LRT with
degrees of freedom equal to the difference between the number of
parameters estimated in complete and reduced models and the sig-
nificance level of P<0.05, was higher than a tabulated chi-square (χ2),
the complete model provided a better description of the variation
(Mota et al., 2013). This led to selection of RRM-4333. However, in

order to do an appropriate comparison with MTM-adjusted weights, an
equivalent RRM without maternal permanent environmental effects,
i.e. RRM-433, which was not significantly different from RRM-4333
through LRT, was used for estimating parameters.

As a residual effect in MTM is equivalent to the sum of direct per-
manent environmental and residual effects in RRM, when comparing
both models, residual variances in RRM must be considered as a com-
posed variance of direct permanent environmental and residual effects
(Nobre et al., 2003; Legarra et al., 2004). In RRM, the EBV of the lth

animal at age t was calculated as follows:

=
=

EBV age( )lt
n

k

ln n t
0

1a

Coefficients of the Legendre polynomials and the resulting statistics
log L, AIC, BIC, (co)variance components, genetic parameters, EBVs in
MTM analysis, and random regression coefficients in RRM were cal-
culated using the WOMBAT software implementation of restricted
maximum likelihood method (REML) (Meyer 2007). Genetic trends
were obtained from the EBVs by linear regression on birth year.

5. Results

The fixed regression curve by RRM-433 that described the changes
in weight over time was nearly linear and approximately parallel to the
trend in the observed weights indicating attainment of 500 kg by 463
days of age (Fig. 2).

Estimates of variance components and genetic parameters from the
MTM scenarios and RRM-433 for growth traits of BW, WW and YW
were presented in Table 4. For BW, estimates of the variance compo-
nents and genetic parameters were unaffected by the analytical proce-
dure when considering CG as fixed. For random CG, despite an increase
in the Var (p) and as a result a decrease in h2a and h2m, no changes were
observed in variance components. For both WW and YW, the Var (p)
estimated with the RRM was greater than the corresponding estimate
from the MTMs with fixed CG due primarily to the difference in the
estimates of Var (e). This resulted in the estimated (h2a) for WW from the
RRM being marginally less than that from the MTM using pre-adjusted
weights and considerably less than the estimates from MTM with that

Table 3
Different orders of Legendre polynomials in RRM along with statistical criteria
of log L, AIC and BIC.

Order of polynomials Statistical criteria

Model Kaa Kmb Kpc Kcd npe log L AIC BIC

3232 3 2 3 2 22 -73862.0 147768.0 147943.2
3233 3 2 3 3 25 -73845.2 147740.3 147939.5
3332 3 3 3 2 25 -73833.3 147716.5 147915.7
3333 3 3 3 3 28 -73826.5 147709.0 147932.1
3433 3 4 3 3 32 -73768.4 147600.8 147855.8
3343 3 3 4 3 32 -73724.2 147512.4 147767.3
3353 3 3 5 3 37 -73603.3 147280.5 147575.3
4332 4 3 3 2 29 -73723.5 147505.1 147736.1
4333 4 3 3 3 32 -73709.8 147483.6 147738.6
4432 4 4 3 2 33 -73713.1 147492.3 147755.2
4342 4 3 4 2 33 -73698.9 147463.8 147726.8
4343 4 3 4 3 36 -73691.4 147454.7 147741.6
4344 4 3 4 4 40 -73689.4 147458.9 147777.6
4443 4 4 4 3 40 -73687.9 147455.9 147774.6
5332 5 3 3 2 34 -73561.8 147191.6 147462.5
5333 5 3 3 3 37 -73554.7 147183.5 147478.3
5432 5 4 3 2 38 -73559.1 147194.2 147497
5342 5 3 4 2 38 -73529.5 147135.0 147437.8
5343 5 3 4 3 41 -73520.9 147123.8 147450.4

a order of fit for direct additive genetic
b maternal additive genetic
c direct permanent environmental and dmaternal permanent environmental

effects enumber of parameters
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incorporated simultaneous adjustment for age due to larger estimates of
additive genetic variance (Var (a)). Similarly, for YW, although the Var
(a) was greater for the RRM than the MTM with pre-adjusted weights,
both methods produced similar estimates of h2a. The MTM in which age
was accounted for simultaneously and CG were considered fixed pro-
duced a larger h2a due to a lower Var (p) and a higher Var (a) than the
corresponding values from RRM and MTM with pre-adjusted weights,
respectively. Considering CG random, h2a for WW was smaller than the
respective values for MTM with fixed CG due to a larger Var (p).
However, it was still slightly higher than RRM and MTM with pre-ad-
justed weights. However, in terms of YW when CG was random, the
resulting h2a was lower than the other models due to having the largest
Var (p). For all three traits the estimates of direct additive genetic
variance were not detectably different whether CG were considered
random or fixed.

The estimates of maternal additive genetic variance (Var (m)) were
small fractions of the corresponding Var (p) and except for WW in

MTM-adjusted weights, the estimates of maternal heritability (h2m) were
near or essentially zero.

Over the span of ages between 123 d and 474 d, estimates of var-
iance components estimated using RRM fluctuated most markedly in
intervals where the data were relatively sparse. This was particularly
true after 365 d for all variances (Figs. 3 and 4). However, both h2a and
h2m reduced after yearling and weaning ages in RRM, respectively
(Fig. 5).

Estimates of the direct additive genetic correlations (r(a)) of BW and
subsequent weights were similar and greater when estimated with
different MTMs than with RRM, and likewise between WW and YW
(Table 5). Estimates of maternal additive genetic correlations (r(m)) in
RRM were greater between BW and WW or YW, and less between WW
and YW. There were no differences in r(m) between BW and WW for all
MTM scenarios. Moreover, the r(m) between BW and YW or WW and
YW in MTM-adjusted weights showed the least and greatest magni-
tudes, respectively. Although slightly greater, the estimates of direct

Fig. 2. Plots of the fixed regression curve of weight on age from the random regression analysis and average weight across the growth trajectory of Hays Converter
cattle.

Table 4
Estimates of variance components and genetic parameters for birth weight (BW), weaning weight (WW) and yearling weight (YW) from different MTM scenarios and
RRM-433 analyses.

Variance componentsa Genetic parametersb

Trait Model Var (a) Var (m) Var (CG) Var (e)c Var (p) h2a h2m

BW RRM 1.75±0.48 0.21± 0.19 - 16.49 18.45±0.34 0.10± 0.03 0.01± 0.01
MTM-adjusted weights 1.86±0.48 0.19± 0.19 - 16.2± 0.46 18.23±0.33 0.10± 0.03 0.01± 0.01
MTM-data1-CG fixed 1.85±0.47 0.19± 0.18 - 16.19±0.46 19.07±0.33 0.10± 0.02 0.01± 0.01
MTM-data1-CG random 2.02±0.48 0.19± 0.18 11.43± 1.50 16.01±0.46 30.59±1.53 0.07± 0.02 0.006±0.006
MTM-data2-CG fixed 1.82±0.47 0.20± 0.18 - 16.21±0.46 18.91±0.33 0.10± 0.02 0.01± 0.01
MTM-data2-CG random 1.99±0.47 0.20± 0.18 11.32± 1.5 16.03±0.46 30.42±1.52 0.07± 0.02 0.006±0.006
MTM-data2-CG fixed-age quadratic 1.81±0.47 0.19± 0.18 - 16.21±0.46 18.87±0.33 0.10± 0.02 0.01± 0.01
MTM-data2-CG random-age quadratic 1.99±0.47 0.19± 0.18 11.30± 1.49 16.03±0.46 30.38±1.52 0.07± 0.02 0.006±0.006

WW RRM 140.35± 24.71 76.51±14.83 - 892.97 1109.84± 18.94 0.13± 0.02 0.07± 0.01
MTM-adjusted weights 150.9± 34.17 115.5±19.8 - 629.52± 26.45 895.94± 19.91 0.17± 0.04 0.13± 0.02
MTM-data1-CG fixed 236.82± 34.45 48.68±10.41 - 599.81± 27.19 885.31± 19.48 0.27± 0.04 0.05± 0.01
MTM-data1-CG random 229.75± 33.26 47.58±10.07 332.24± 49.01 604.56± 26.63 1214.1± 52.17 0.19± 0.03 0.04± 0.008
MTM-data2-CG fixed 238.09± 33.52 44.59±10.12 - 594.04± 26.31 876.73± 18.9 0.27± 0.03 0.05± 0.01
MTM-data2-CG random 229.31± 32.25 43.99±9.8 326.27± 47.43 599.05± 25.72 1198.6± 50.52 0.19± 0.03 0.04± 0.008
MTM-data2-CG fixed-age quadratic 234.94± 33.47 45.05±10.23 - 595.9±26.29 875.9±18.86 0.27± 0.03 0.05± 0.01
MTM-data2-CG random-age quadratic 226± 32.14 44.52±9.9 323.04± 47.02 601.21± 25.68 1194.8± 50.12 0.19± 0.03 0.04± 0.008

YW RRM 960.8± 118.58 139.82± 50.23 - 3259.44 4360.06± 88.93 0.22± 0.03 0.03± 0.01
MTM-adjusted weights 387.93± 84.37 100.97± 35.97 - 1215.15± 62.88 1704.05± 44.08 0.23± 0.05 0.06± 0.02
MTM-data1-CG fixed 574.5± 80.31 - - 1112.8± 65.9 1687.3± 46.33 0.34± 0.04 -
MTM-data1-CG random 570.08± 78.89 - 3234.3± 419.14 1118.4± 65.06 4922.8± 420.85 0.12± 0.02 -
MTM-data2-CG fixed 622.73± 79.84 - - 1148.1± 64.19 1770.8± 45.7 0.35± 0.04 -
MTM-data2-CG random 610.3± 78 - 3189.6± 402.48 1157.7± 63.20 4957.6± 404.35 0.12± 0.02 -
MTM-data2-CG fixed-age quadratic 614.15± 78.42 - - 1126.9± 63.04 1741.1± 45.04 0.35± 0.04
MTM-data2-CG random-age quadratic 601.74± 76.58 - 3220.6± 405.52 1136.3± 62.04 4958.6± 407.3 0.12± 0.02 -

a Var (a) = direct additive genetic variance, Var (m) =maternal additive genetic variance, Var (CG) = contemporary group variance, Var (e) = residual variance,
Var (p) = phenotypic variance

b h2a = direct heritability, h2m = maternal heritability
c For the RRM = sum of estimates of variance for permanent environmental effects due to animals and residual
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permanent environmental correlations from RRM were similar to those
for residual correlations in all MTM scenarios. When using CG as a
random effect in MTM, estimates of CG correlations (r(CG)) between
BW and WW or YW was less than WW with YW. Estimates of pheno-
typic correlations in both models were similar and slightly less in RRM.

Based on the EBVs estimated by RRM, the genetic trends for direct
effects on BW, WW, and YW were -3.6± 0.7, 116± 8, and 280±21 g/
yr, respectively (Table 6). The corresponding estimates of genetic trend
based on MTM-adjusted weights were -7.1± 1, 63.3± 9.6, and
-73± 16 g/yr, respectively. Although using CG as a random effect in
MTMs resulted in substantially lower genetic trends for all weight traits
than using fixed effects, all the six MTMs were in accordance with
MTM-adjusted weights results. In total, estimates of the genetic trends
from MTM were clearly less than those from RRM. Generation numbers
in the recorded Hays Converter pedigree ranged from a minimum 0 for
animals with unknown parents to a maximum of 5.16 over the period
1970 to 2016. The average generation interval was 5.35±0.07 yr. In
order to realize how sire selection over the past years has affected the
genetic trends, the selection differential (SD) of HC sires were compared
to the best males available that were not chosen as sires (Fig. 6). Irre-
spective of how the data were analyzed, there was a consistent loss of

selection pressure on the individual traits relative to the opportunities
that existed in the population.

6. Discussion

Different orders of Legendre polynomials were evaluated with var-
ious statistical criteria to find the RRM that was used to describe the
variation in body weights over time for the HC population.
Baldi et al. (2010) suggested taking precision into account when adding
random effects (including direct additive genetic, maternal additive
genetic, animal permanent environmental and maternal permanent
environmental effects) to a model due to the potential for over-para-
meterization. Moreover, convergence problems and susceptibility to
numerical errors may be avoided by excluding non-essential parameters
from the model (Arango et al., 2004; Legarra et al., 2004). Although in
utilizing RRM to evaluate milk test day records, Jamrozik and
Schaeffer (2002) indicated that models may be assessed differently
when using different statistical criteria, and which model would be the
most suitable may be unclear. Similar issues were observed in this
study.

The main goal of creating HC was to develop an animal that would

Fig. 3. Estimates of Var (a) and Var (m) in RRM-433 together with MTM-adjusted weights along the growth trajectory.

Fig. 4. Estimates of Var (e) and Var (p) by RRM-433 and MTM-adjusted weights along the growth trajectory.
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efficiently convert feed to gain and reach the desirable market weight of
500 kg at the earliest age possible (Fleming et al., 2016). Considering
the fixed regression curve in Fig. 2, the attainment of 500 kg by 463
days of age was deemed consistent with the breeding goal of reaching
desirable market weight at a young age. However, it only addresses that
component of efficient conversion of feed to gain that results from
avoiding the additional feed consumed in satisfying maintenance re-
quirements over a longer time on feed (Nielsen et al., 2013).

To date, RRMs have most frequently used orthogonal (Legendre)
polynomials because they flexibly model changes in variance and
covariance along a continuous scale, especially at higher orders
(Meyer 2005b). However, observations at the extremes are over-em-
phasized and this may be problematic for models that are para-
meterized in this way. In fact, as ‘Runge's phenomenon’ describes, im-
plausible errors in variance component estimates may be observed at
the ends of the growth trajectory due to small numbers of extreme

Fig. 5. Estimates of direct and maternal heritabilities in RRM-433 and MTM-adjusted weights along the growth trajectory.

Table 5
Estimates of direct and maternal additive genetic, contemporary group, residual (permanent environmental in RRM) and phenotypic correlations by RRM-433 and
different MTM scenarios.

Traits WW YW WW YW WW YW WW YW WW YW
Models r(a)a r(m)b r(CG)c r(e)d r(p)e

BW RRM 0.21± 0.15 0.47± 0.12 0.43± 0.31 0.56± 0.40 - - 0.17±0.11 0.10± 0.07 0.16± 0.02 0.15± 0.02
MTM-adjusted weights 0.67± 0.13 0.77± 0.12 0.28± 0.31 -0.11± 0.47 - - 0.14±0.02 0.11± 0.03 0.21± 0.01 0.20± 0.02
MTM-data1-CG fixed 0.60± 0.12 0.65± 0.11 0.27± 0.33 - - - 0.14±0.02 0.12± 0.03 0.21± 0.01 0.21± 0.02
MTM-data1-CG random 0.53± 0.12 0.62± 0.11 0.31± 0.34 - 0.28±0.09 0.29± 0.09 0.15±0.02 0.12± 0.03 0.23± 0.03 0.24± 0.04
MTM-data2-CG fixed 0.59± 0.12 0.60± 0.11 0.23± 0.33 - - - 0.14±0.02 0.12± 0.03 0.20± 0.01 0.20± 0.01
MTM-data2-CG random 0.52± 0.12 0.61± 0.11 0.3±0.33 - 0.26±0.10 0.20± 0.09 0.15±0.02 0.12± 0.03 0.22± 0.03 0.19± 0.04
MTM-data2-CG fixed- age
quadratic

0.59± 0.12 0.60± 0.11 0.22± 0.33 - - - 0.14±0.02 0.12± 0.03 0.20± 0.01 0.20± 0.01

MTM-data2-CG random-
age quadratic

0.52± 0.12 0.62± 0.11 0.29± 0.34 - 0.26±0.10 0.21± 0.09 0.15±0.02 0.11± 0.03 0.22± 0.03 0.20± 0.04

WW RRM 0.54± 0.07 0.55± 0.13 - 0.71± 0.02 0.61± 0.01
MTM-adjusted weights 0.90± 0.05 0.92± 0.07 - 0.65± 0.02 0.72± 0.01
MTM-data1-CG fixed 0.91± 0.03 - - 0.64± 0.02 0.70± 0.01
MTM-data1-CG random 0.92± 0.03 - 0.50± 0.08 0.64± 0.02 0.56± 0.03
MTM-data2-CG fixed 0.89± 0.04 - - 0.56± 0.02 0.65± 0.01
MTM-data2-CG random 0.90± 0.04 - 0.45± 0.08 0.56± 0.02 0.52± 0.03
MTM-data2-CG fixed-age
quadratic

0.88± 0.04 - - 0.56± 0.02 0.64± 0.01

MTM-data2-CG random-
age quadratic

0.90± 0.04 - 0.46± 0.08 0.56± 0.02 0.52± 0.03

a direct additive genetic correlation
b maternal additive genetic correlation
c contemporary group correlation
d residual correlation in MTM and direct permanent environmental correlation in RRM
e phenotypic correlation

Table 6
Estimates of genetic trends (g/yr) for RRM-433 and different MTM scenarios.

Models BW WW YW

RRM -3.6± 0.7 116±8 280±21
MTM-adjusted weights -7.1± 1 63.3± 9.6 -73± 16
MTM-data1-CG fixed -5.1± 1 117.7±13.5 -14± 20.1
MTM-data1-CG random -17±1 76.2± 13.2 -59.45±20.5
MTM-data2-CG fixed -6.2± 1 82±13.8 -147.9±22.03
MTM-data2-CG random -19.4±1 37.6± 13.5 -194.4±21.7
MTM-data2-CG fixed-age

quadratic
-6.7± 1 78.9± 13.7 -172.5±22

MTM-data2-CG random-age
quadratic

-20.07± 1 34.7± 13.3 -212.8±21.7
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observations and higher orders of polynomials (de Boor 2001;
Meyer 2005b; Meyer and Kirkpatrick 2005). This is consistent with the
results obtained here. Moreover, in contrast to MTM, which incorporate
information among traits only through linear covariances, RRM allow
for more complex global consideration of information over the whole
curve (Meyer 2005b). Similar results of unexpected estimates beyond
biological reality have been observed for variance components analysis
by RRM in other analyses of data from beef cattle (Boligon et al., 2010;
Mota et al., 2013). In this study, B-spline RR models were not used as a
panacea for RRM because they are also susceptible to the sparcity and
irregularity of records distribution and choosing suitable knots and
degrees of B-splines would not be convenient (Meyer 2005c). An in-
creased frequency of data recording may not be feasible as it would
increase the cost to weigh animals on a more frequent basis from birth
to beyond a year of age. As a potential alternative, if the maximum
degree of polynomials were established in advance, the ages at which to
record weights in order to maximize the precision of random regression
coefficients could be determined from statistical theory.

Usually, the number of weight records in beef cattle production is
dependent on the length of growth trajectory which differs among
breeds. For example, Nellore cattle typically show more data than
European breeds (Albuquerque and Meyer 2001). Therefore, as men-
tioned above, in shorter times, getting more data points than BW, WW
and YW would be possible if the relative costs are provided to weigh
animals regularly. In this study, although there were fewer points
available on the growth trajectory than those normally applied in RRM,
the purpose was to see how the results deviated from MTM specially
when working with local beef herds.

On the other hand, when there are more points available for longer
trajectories, the frequency of data for those points are more important
to affect the analysis than the number of points. For example, in a re-
search study done by Meyer (2005a) regarding the use of RRM to
analyze the growth curve of Australian Angus cattle, although there
were more records available for the growth trajectory than this study,

only 1.5% of the animals had 7-9 records and they mostly showed four
main critical points on average. Moreover, considering
Boligon et al. (2010) and Oliveira et al. (2017) results, even with more
points available, it was still possible to observe extreme values at the
boundaries due to selecting a model with higher orders that matched
the statistical criteria and not what might be reasonable with biological
realities. In other words, if there are data with high frequency for the
critical points of a growth trajectory, RRM will be more sensitive to the
orders than the number of points and/or the length of the growth tra-
jectory.

However, it could be argued that in the case of HC where weaning
typically was at a younger age than the 205-d standard, RRM would
allow more data to be used in prediction of a 205-d weight EBV than if
weaning weights were edited to the 160 to 250 day window re-
commended by the Beef Improvement Federation (2018). This increase
in the amount of data used is expected to increase accuracy of EBV for
some selection candidates due to their own phenotypes being included
in the analysis (Meyer 2004; Bohmanova et al., 2005; Mota et al.,
2013). Furthermore, according to a research done by
Bohmanova et al. (2005), for a specific length of growth trajectory
(similar to this study), although incorporating additional records in
RRM increased the accuracy compared to MTM, the change in accuracy
would be small enough to conclude that both models performed simi-
larly. Therefore, as observed in the variation results, even with fewer
data points on the growth trajectory, RRM performed similar to MTM so
that there may be no advantage to get more frequent data points.

Maternal effects are typically thought to be important from birth to
weaning age and then gradually decreasing to the end of growth tra-
jectory. In the present study, estimates of maternal genetic effects other
than on WW were not significant. In addition, maternal permanent
environmental effects accounted for negligible proportion of pheno-
typic variance (not shown). This may be logical in that for HC there
were few calves per cow and virtually all cows produced calves in a
single herd. Therefore, as opposed to Boligon et al. (2010) and

Fig. 6. Selection differentials (SD) of HC sires and best available males for BW, WW and YW in MTM-adjusted weights and RRM-433.
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Mota et al. (2013), the exclusion of maternal permanent environmental
effects not only did not affect the overall parameter estimation but also
provided a better approximation for standard errors which could be
considered when using RRM.

In this study, despite the usual MTM that employs adjusted weights
in the analysis, other MTMs were also defined in which WW and YW
records were not subjected to a priori adjustment, but rather their real
ages were incorporated into the models as both linear and quadratic
covariates. This increased the estimation of genetic variation and con-
sequently estimates of direct heritability which implied that the pre-
adjustments of records to defined ages in MTM and/or some standar-
dization of ages through the process of RRM may lead to a reduction in
the corresponding genetic variation.

The expanded range in ages at which weights were deemed accep-
table for incorporation into the analysis (dataset 2) did not result in any
specific changes of the estimated variance components and genetic
parameters because the relaxed restrictions on age did not add many
records to the analyses. Additionally, incorporation of ages into the
model for dataset 2 as quadratic effects also did not affect the variance
component estimates. This latter result may reflect the observation that
weight changes across the growth trajectory were mainly linear.

Adding CG as fixed or random did not affect the overall genetic
variation and other variance components except for an increase in Var
(p) and consequent reduction in estimates of direct heitabilitity.
Contemporary groups are defined as a group of animals that benefit
from common environmental and management factors. They are
usually taken into account as fixed effects in animal models to make the
results of genetic evaluations invariant and reduce biases in genetic
comparisons due to the association between CG and sires
(Van Vleck, 1987). However, if they are random, the prediction error
variance will be reduced due to using a larger amount of data for
prediction of animal breeding values (Visscher and Goddard, 1993).
Today, there is no consensus about the best method of applying this
effect. However, in general, CG is considered fixed in beef cattle genetic
evaluations (Ramirez-Valverde et al., 2008). Likewise, many published
literature regarding applications of RRM and MTM in beef cattle that
have been referred to here, used CGs as fixed effects and hence the
results of this study were more following and similar to them. Of course,
some studies have shown that random CGs would be a better choice if
there are numerous levels of this effect, small subclasses are pre-
dominant and limited use of AI in the population has led to a weak
genetic connectedness among them (Schaeffer, 2009; Vostry et al.,
2015). Although having several herds across Canada, the HC data for
this study originated from one farm so that there were not many levels
or small subclass of CGs available and regarding the similarity in MTM
results, it seemed reasonable to consider CGs as fixed effects.

Fleming (2013) estimated the direct heritability of BW in HC to be
0.06 through a univariate analysis. Thus, the value reported by
Fleming (2013) was slightly less than the present estimate of approxi-
mately 0.10. However, Fleming (2013) also obtained greater herit-
ability estimates for WW (0.30) and YW (0.42) using a bivariate model
than were observed in this study for RRM and MTM-adjusted weights.
Estimates of maternal heritability for BW, while still near zero, were
greater in Fleming (2013) (0.03 vs 0.01), but greater for WW in the
present study (0.13 vs 0.04). However, the MTM for the analysis of
datasets 1 and 2 with fixed CG produced similar estimates of herit-
ability for WW and YW to those of Fleming (2013). The almost zero
estimation of maternal heritability for BW might be related to the low
number of calves per cow available and/or simply that in HC BW was
not affected by the heritable factors influencing the uterine environ-
ment (Ferrell, 1993). However, for WW, the higher maternal herit-
ability likely reflects differences in milk production (MacNeil and
Mott, 2006).

Positive genetic correlations may result from a part-whole re-
lationship between traits. For example, weaning weight makes up a part
of yearling weight. However, the very large values in MTM may also

arise from pre-adjustment of the data before analysis (Iwaisaki et al.,
2005).

According to Boligon et al. (2010) (although they did not report the
standard errors), the similar direct and maternal genetic correlations in
RRM suggest that these effects are likely controlled by the same genes
and that are considered similar between different traits. However, al-
though there was a weak maternal genetic correlation between BW with
WW and YW in MTM, the resulting standard errors were high and si-
milar to RRM which reflected the poor structure of HC data. Moreover,
the moderate to high maternal genetic correlation between WW and
YW in both models indicates that the maternal effect on YW is probably
a carry-over effect from WW (Boligon et al., 2010).

With respect to RRM, BW appeared not to be very genetically cor-
related to WW and YW, which would be desirable from an economic
point of view when selecting bulls with lower BW to facilitate ease of
calving. The somewhat lower direct genetic correlation between BW
and WW in RRM might be due better modeling of age in both fixed and
random effects compared to MTM (Iwaisaki et al., 2005). In this study,
direct additive genetic correlation between WW and YW in MTM was
slightly greater than Fleming's result (0.81) in 2013.

Except for genetic correlations, the estimates of variance compo-
nents and heritability for BW were approximately of the same magni-
tude in comparable MTM and RRM models. This reflected the im-
portance of the fact that there are similarities in using MTM or RRM
when enough data is available for each time point in the growth curve.
Compared to BW and WW, there was a slightly greater difference be-
tween the two models in measuring the changes over time for YW. This
may originate from the low number of actual records available for 365
days of age in RRM as an end point relative to MTM. The lower mag-
nitude of the genetic correlation between WW and YW in RRM may
have resulted in higher differences between their genetic values relative
to MTM. However, despite YW, EBV trends for other traits approxi-
mately followed a similar pattern in both models. Furthermore, as there
is a positive genetic correlation between WW and YW, it seemed RRM
estimated a more realistic increasing trend for both traits than MTM
which showed a decreasing trend for YW.

Genetic trends for weight traits in HC were directly affected by the
sires selected to produce calves in each year. Sire selection did not al-
ways maximize the genetic selection differentials (Fig. 6). Sire selection
always used the phenotypic records of weaning and yearling weights
and there was no selection based on EBV or an index until 2014. In fact,
lack of a structured management program that takes into account ge-
netic values when selecting animals, has resulted in very little mean-
ingful progress in genetic improvement of growth traits of a local beef
breed like HC. Additionally, a large proportion of the herd was sold in
2000 leading to a meaningful reduction in the number of candidates for
selection. During 2004 to 2008, little sire selection was practiced which
may have also contributed to the decreasing trend in genetic values of
weight traits in recent years.

7. Conclusion

Results of this study suggest similarities between RRM and MTM for
most estimates of variance components and genetic trends of HC. This is
mainly because records occur at standard points for both models.
Currently, choosing MTM for HC genetic evaluation seems simpler.
Increased weaning and yearling weights were the main objectives for
HC from its inception. Tighter control of when these traits are recorded
and replacement of selection based on phenotypes with selection based
on EBV are expected to accelerate progress toward this goal. In these
data, whether CG were considered random or fixed had little effect and
thus fixed CG were deemed preferable due to their being more parsi-
monious with other genetic evaluations for beef cattle.
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